

Introduction

Features

Fennel is a task queue for Python 3.7+ based on Redis Streams with a Celery-like API.

	Supports both sync (e.g. Django, Flask) and async (e.g. Starlette, FastAPI) code.

	Sane defaults: at least once processing semantics, tasks acknowledged on completion.

	Automatic retries with exponential backoff for fire-and-forget jobs.

	Clear task statuses available (e.g. sent, executing, success).

	Automatic task discovery (defaults to using **/tasks.py).

	Exceptionally small and understandable codebase.

Note

This is an alpha release. The project is under development, breaking changes are
likely.

Installation

pip install fennel

Basic Usage

Run Redis [https://redis.io] and then write your code in tasks.py:

from fennel import App

app = App(name='myapp', redis_url='redis://127.0.0.1')

@app.task
def foo(n):
 return n

Enqueue a task to be executed in the background by a fennel worker process.
foo.delay(7)

Meanwhile, run the worker:

$ fennel worker --app tasks:app

Asynchronous API

Fennel also supports an async API. If your code is running in an event loop (e.g. via
Starlette [https://www.starlette.io/] or FastAPI [https://fastapi.tiangolo.com/]),
you will want to use the async interface instead:

from fennel import App

app = App(name='myapp', redis_url='redis://127.0.0.1', interface='async')

@app.task
async def bar(x):
 return x

await bar.delay(5)

Contents

	 Guide
	Interfaces

	Two use-cases

	Error handling

	The dead-letter queue

	Workers

	Logging

	Limitations

	 Installation

	 Motivation

	 Architecture
	Fundamentals

	Redis Streams

	The Worker

	Job Lifecycle

	 CLI
	fennel

	 API Reference
	fennel

	fennel.settings

	fennel.worker

	fennel.client

	fennel.aio.client

	fennel.status

	fennel.exceptions

	fennel.utils

	fennel.job

	 Changelog
	v0.3.0 (2020-08-20)

	v0.2.4 (2020-07-03)

	v0.2.3 (2020-07-02)

	v0.2.2 (2020-07-02)

	v0.2.1 (2020-07-02)

	v0.2.0 (2020-06-14)

	v0.1.2 (2019-10-06)

	v0.1.1 (2019-10-03)

	v0.1.0 (2019-10-03)

Indices and tables

	Index

	Module Index

	Search Page

Guide

Fennel is a task queue library for Python.

It enables you to register your functions as tasks, which you can then enqueue in Redis.
In the background, worker processes will pull tasks from the queue and execute them.
This follows the same basic pattern established by Celery and other task queue systems.

Interfaces

We support both sync and async interfaces to the fennel system. This means you can use
it in traditional web frameworks (e.g Django, Flask), but also newer frameworks built on
top of asyncio (e.g. Starlette, FastAPI, Quart). We default to interface='sync', but
you can select your interface as an option in your app configuration.

Sync

import time

from fennel import App
from fennel.client import gather

app = App(name='myapp', redis_url='redis://127.0.0.1')

@app.task
def foo(n):
 time.sleep(n)
 return n

x = foo.delay(4) # Enqueue a task to be executed in the background.
x.get() # Waits for completion and returns 4.

Async

import asyncio

from fennel import App
from fennel.client.aio import gather

app = App(name='myapp', redis_url='redis://127.0.0.1', interface='async')

@app.task
async def foo(n):
 await asyncio.sleep(n)
 return n

x = await foo.delay(4) # Enqueue a task to be executed in the background.
await x.get() # Waits for completion and returns 4.

Two use-cases

1. Fire-and-forget

The most common way to use a task queue is to fire off background tasks while processing
requests in a web application. You have some work that needs to happen (e.g. generating
image thumbnails, sending an email), but you don’t want the user to wait for it to
complete before returning a response. In this case, it’s important that the task
succeeds, but your code will not be waiting to ensure that it does. If failures happen,
you may want to automatically retry the task, or be notified through your monitoring
system.

This is the default scenario expected by Fennel. We support it by automatically retrying
tasks which fail, up to fennel.settings.Settings.default_retries times.
Individual tasks can be configured via the retries kwarg:

@app.task(retries=3)
def foo(n):
 time.sleep(n)
 return n

Retries will occur on a schedule provided by the retry_backoff function. By default,
Fennel will use an exponential backoff algorithm with jitter to avoid overloading the
workers in case a large number of failures happen simulatenously. (See
fennel.utils.backoff() for more details.)

If all retries are exhausted and the task still fails, it will be placed in the
‘dead-letter queue’, see Error handling and The dead-letter queue below for details.

2. Compose parallel pipelines

There is a second way to use a task queue: when you have a large amount of work you want
to perform in parallel, perhaps on dedicated high-performance machines. In this case
your code may want to wait for all tasks to complete before moving on to the next batch
of work.

This scenario is also supported by Fennel. You should set retries=0 on your task (or
default_retries=0 in your app instance). The waiting primitives we supply are:

	gather, when you want all tasks to complete and collect the results.

	wait, to wait for a specific duration before timing out.

Sync:

@app.task
sync def foo(n):
 time.sleep(n)
 return n

results = [foo.delay(i) for i in range(6)]

Waits for completion and returns [1, 2, 3, 4, 5, 6].
gather(results)

Instead, waits for 10 seconds, returns two sets of Futures.
done, pending = wait(results, timeout=10)

Async:

@app.task
async def foo(n):
 await asyncio.sleep(n)
 return n

results = [await foo.delay(i) for i in range(6)]

Waits for completion and returns [1, 2, 3, 4, 5, 6]
await gather(results)

Instead, waits for 10 seconds, returns two sets of Futures.
done, pending = await wait(results, timeout=10)

Error handling

Fennel considers a task to have failed if any exception is raised during its execution.

If a task has retries enabled, it will be scheduled according by the retry_backoff
function. By default, Fennel will use an exponential backoff algorithm with jitter to
avoid overloading the workers in case a large number of failures happen simulatenously
(see fennel.utils.backoff() for more details). When retries are exhausted the task
enters the dead-letter queue.

If you attempt to retrieve the result of a task that has failed, fennel will raise
fennel.exceptions.TaskFailed with the original exception information attached:

>>> @app.task(retries=0)
>>> async def foo(n):
... raise Exception("baz")
...
>>> x = await foo.delay(3)
...
>>> try:
... result = await x.get()
>>> except TaskFailed as e:
... assert e.original_type == "Exception"
... assert e.original_args == ["baz"]

The dead-letter queue

The DLQ hold tasks which have failed and exhausted all their retry attempts. They now
require manual intervention, for instance you may need to redeploy your applicaiton code
to fix a bug before you replay the failed tasks.

You can read, replay, or purge the contents of the DLQ as follows:

$ fennel dlq read --app mymodule:myapp
$ fennel dlq replay --app mymodule:myapp
$ fennel dlq purge --app mymodule:myapp

If you need more granular control, the Fennel client library also provides functions to
interact with the DLQ programmatically. For example you can replay all jobs matching
certain criteria (using the async client):

>>> from fennel.client.aio import replay_dead
...
>>> from myapp.tasks import app # <-- Your Fennel app instance
...
>>> replay_dead(app, filter=lambda job: job.task == "tasks.mytask")
[<Job>, ...]

To understand how jobs are represented internally, see fennel.job.

Workers

Workers are launched via the CLI:

$ fennel worker --app mymodule:myapp

You must specify the Python module and Fennel application instance whose tasks the
worker will execute. See the CLI page for more information.

Logging

Fennel supports structured logging out of the box. You can choose whether to use a
human-readable format, or JSON via fennel.settings.Settings.log_format

Limitations

	Task args and kwargs must be JSON-serialisable.

	Return values (if results storage is enabled) must be JSON-serialisable.

	Processing order is not guaranteed (if you want to ensure all events for a given key
are processed in-order, see https://github.com/mjwestcott/runnel).

	Tasks will be processed at least once (we acknowledge the underlying messages when a
task returns without an exception, so any failures before then will happen again when
retried).

This is similar to the approach taken by Celery, Dramatiq, and task queues in other
languages. As a result, you are advised to follow these best-practices:

	Keep task arguments and return values small (e.g. send the user_id not the User
model instance)

	Ensure that tasks are idempotent – if you process them more than once, the same
result will occur.

Also, Redis is not a highly durable database system – it’s durability is configurable
and limited. You are advised to read the related parts [https://redis.io/topics/persistence] of the Redis documentation.

This is a notable section of the Streams Intro [https://redis.io/topics/streams-intro]:

	AOF must be used with a strong fsync policy if persistence of messages is important
in your application.

	By default the asynchronous replication will not guarantee that XADD commands or
consumer groups state changes are replicated: after a failover something can be
missing depending on the ability of slaves to receive the data from the master.

	The WAIT command may be used in order to force the propagation of the changes to a
set of slaves. However note that while this makes very unlikely that data is lost,
the Redis failover process as operated by Sentinel or Redis Cluster performs only a
best effort check to failover to the slave which is the most updated, and under
certain specific failures may promote a slave that lacks some data.

So when designing application using Redis streams and consumer groups, make sure to
understand the semantical properties your application should have during failures,
and configure things accordingly, evaluating if it is safe enough for your use case.

Installation

pip install fennel

Fennel is tested on Python 3.7+

Motivation

Python needs an async/await compatible task queue library.

(And Celery is perhaps past its prime.)

Architecture

Fundamentals

Fennel’s architecture is similar to other job queue systems like Celery, Dramatiq, RQ:

 +-Redis--------------------+
 | |
 | * The Job Queue |
 | * The Dead-Letter Queue |
 | * The Schedule |
 | * Results Storage |
 | * Job Metadata |
 | * Worker State |
 | |
 +--------------------------+
 ^ |
 | send | receive
 | jobs | jobs
 | |
 | v
+---------------------+ +---------------------+
Your Application		Fennel Worker
+---------------------+ +---------------------+

When your application sends jobs via fennel.client.Task.delay(), they are
persisted in Redis. Meanwhile a background worker process is waiting to receive jobs and
execute them using the Python function decorated with fennel.App.task().

In the normal course of events, the job will be added to a Redis Stream (to notify
workers) and a Redis Hash (to store metadata such as the current status and number of
retries to perform). When execution is finished, the return value will be persisted in a
Redis List (to allow workers to block awaiting it’s arrival) and set to expire after a
configurable duration (fennel.settings.Settings.result_ttl).

In case of execution failure (meaning an exception is raised), if the job is configured
for retries it will be scheduled in a Redis Sorted Set (so workers can poll to discover
jobs whose ETA has elapsed). If retries are exhausted, the job will be added to the
dead-letter queue (another Redis Stream). From there, manual intervention is required to
either purge or replay the job.

Redis Streams

Under the hood, Fennel uses Redis Streams as the fundamental ‘queue’ data structure.
This provides useful functionality for distributing jobs to individual workers and
keeping track of which tasks have been read and later acknowledged.

Our use of Streams is arguably non-standard. The expectation is that messages accumulate
in the stream, which is periodically trimmed to some maximum length governed by memory
limits. In our case, we don’t need to maintain a long history of messages in memory and
we don’t want the trim operation to remove any unacknowledged meessages, so we take
advantage of the XDEL operation and delete messages when they are acknowledged, like
a traditional job queue.

The Worker

Workers are launched via the CLI. Below is a diagram representing a worker with
the settings processes=2 and concurrency=8:

+-Worker--+
| |
| +-Executor---------------------+ +-Executor---------------------+ |
	8x consumer coroutines		8x consumer coroutines	
	1x heartbeat coroutine		1x heartbeat coroutine	
	1x maintenance coroutine		1x maintenance coroutine	
	1x scheduler coroutine		1x scheduler coroutine	
+------------------------------+ +------------------------------+				
+---+

The worker process itself simply spawns 2 executor processes and monitors their health.
The executors themselves run 8 consumer coroutines which are responsible for waiting to
receive jobs from the queue and then executing them. If the job is a coroutine function,
it is awaited in the running asyncio event loop, otherwise it is run in a
ThreadPoolExecutor so as not to block the loop.

The other coroutines maintain the health of the system by publishing heartbeats, polling
for scheduled jobs, and responding to the death of other workers or executors.

CPU-bound tasks benefit from multiple processes. We default to running
multiprocessing.cpu_count() executors for this reason. IO-bound tasks will benefit
from high executor concurrency and we default to running 8 consumer coroutines in each
executor.

Job Lifecycle

Python functions become tasks when they are decorated with fennel.App.task(). When
they are enqueued using fennel.client.Task.delay(), they become jobs in the Fennel
queue.

Jobs transition between a number of statuses according to the logic below:

 +-----------+
 | |
 | |
 5 | SUCCESS |
+-----------+ +-----------+ +-----------+ +---->| |
| | | | | | | | |
| | 1 | | 2 | | | +-----------+
| UNKNOWN |----->| SENT |----->| EXECUTING |----+
| | | | | | |
| | | | | | | +-----------+
+-----------+ +-----------+ +-----------+ +---->| |
 | ^ 6 | |
 | | | DEAD |
 3 | | 4 | |
 | | | |
 v | +-----------+
 +-----------+
 | |
 | |
 | RETRY |
 | |
 | |
 +-----------+

	Client code sends a job to the queue via fennel.client.Task.delay().

	A worker reads the job from the queue and begins executing it.

	Execution fails (an exception was raised) and the job’s max_retries has not been
exceeded. The job is placed in the schedule (a Redis sorted set), which workers
periodically poll.

	A job is pulled from the schedule and execution is attempted again. (This can
repeat many times.)

	Execution succeeds (no exceptions raised).

	Execution fails (an exception was raised) and retries have been exhausted, so the job
is now in the dead-letter queue where it will remain until manual intervention (via
the CLI or client code).

Job status can be retrieved via the AsyncResult object:

>>> import time
>>> from fennel import App
...
>>> app = App(name='myapp')
...
>>> @app.task
>>> def foo(n):
... time.sleep(n)
... return n
...
>>> x = foo.delay(4)
>>> x.status()
SENT
>>> # Wait a few moments.
>>> x.status()
EXECUTING
>>> # Wait for completion.
>>> x.get()
4
>>> x.status()
SUCCESS

CLI

fennel

fennel [OPTIONS] COMMAND [ARGS]...

dlq

Interact with the dead-letter queue. Choices for the action argument:

* read - Print all tasks from the dead-letter queue to stdout.

* replay - Move all tasks from the dead-letter queue back to the main task queue for reprocessing.

* purge - Remove all tasks from the dead-letter queue forever.

fennel dlq [OPTIONS] [read|replay|purge]

Options

	
-a, --app <application>

	Required

Arguments

	
ACTION

	Required argument

info

Print a JSON-encoded summary of application state.

fennel info [OPTIONS]

Options

	
-a, --app <application>

	Required

task

Print a JSON-encoded summary of job information.

fennel task [OPTIONS]

Options

	
-a, --app <application>

	Required

	
-u, --uuid <uuid>

	Required

worker

Run the worker.

fennel worker [OPTIONS]

Options

	
-a, --app <application>

	Required A colon-separated string identifying the fennel.App instance for which to
run a worker.

If a file foo.py exists at the current working directory with the following
contents:

>>> from fennel import App
>>>
>>> app = App(name="myapp", redis_url="redis://127.0.0.1:6379")
>>>
>>> @app.task
>>> def f():
>>> pass

Then pass foo:app as the app option: $ fennel worker --app=foo:app

	
-p, --processes <processes>

	How many executor processes to run in each worker. Default
multiprocessing.cpu_count()

	
-c, --concurrency <concurrency>

	How many concurrent consumers to run (we make at least this many Redis
connections) in each executor process. The default, 8, can handle 160 req/s in
a single worker process if each task is IO-bound and lasts on average 50ms. If
you have long running CPU-bound tasks, you will want to run multiple executor
processes. Default 8

API Reference

fennel

	
class fennel.App(name: str, **kwargs)

	The app is the main abstraction provided by Fennel. Python functions are
decorated via @app.task to enable background processing. All settings are
configured on this object.

	Parameters

	
	name (str) – Used to identify this application, e.g. to set which tasks
a worker will execute.

	kwargs – Any settings found in fennel.settings.Settings

Examples

>>> from fennel import App
...
>>> app = App(
... name='myapp',
... redis_url='redis://127.0.0.1',
... default_retries=3,
... results_enabled=True,
... log_level='info',
... log_format='json',
... autodiscover='**/tasks.py',
... interface='sync',
...)
...
>>> @app.task(retries=1)
>>> def foo(x):
... return x
...
>>> x = foo.delay(7) # Execute in the background.
>>> x
AsyncResult(uuid=Tjr75jM3QDOHoLTLyrsY1g)
>>> x.get() # Wait for the result.
7

If your code is running in an asynchronous event loop (e.g. via Starlette,
FastAPI, Quart), you will want to use the async interface instead:

>>> import asyncio
...
>>> app = App(name='foo', interface='async')
...
>>> @app.task
>>> async def bar(x)
... await asyncio.sleep(x)
... return x
...
>>> x = await bar.delay(5)
>>> await x.status()
SENT
>>> await x.get()
5

	
task(func: Callable = None, *, name=None, retries=<object object>) → Any

	A decorator to register a function with the app to enable background processing
via the task queue.

The worker process (see fennel.worker.worker) will need to discover all
registered tasks on startup. The means all the modules containing tasks need to
be imported. Fennel will import modules found via
fennel.settings.Settings.autodiscover, which by default is
'**/tasks.py'.

	Parameters

	
	func (Callable) – The decorated function.

	name (str) – The representation used to uniquely identify this task.

	retries (int) – The number of attempts at execution after a task has failed (meaning raised
any exception).

Examples

Exposes an interface similar to Celery:

>>> @app.task(retries=1)
>>> def foo(x):
... return x

Tasks can be enqueued for processing via:

>>> foo.delay(8)
AsyncResult(uuid=q_jb6KaUT-G4tOAoyQ0yaA)

The can also be called normally, bypassing the Fennel system entirely:

>>> foo(3)
3

By default, tasks are ‘fire-and-forget’, meaning we will not wait for their
completion. They will be executed by worker process and will be retried
automatically on failure (using exponential backoff), so we assume tasks are
idempotent.

You can also wait for the result:

>>> x = foo.delay(4)
>>> x.status()
SENT
>>> x.get(timeout=10)
4

If instead you have many tasks and wish to wait for them to complete you can use
the waiting primitives provided (you will want to ensure all tasks have
retries=0, which you can set by default with an app setting):

>>> from fennel.client import gather, wait
>>> results = [foo.delay(x) for x in range(10)]
>>> gathered = gather(results) # Or:
>>> done, pending = wait(results, timeout=2)

If your application is running in an event loop you can elect to use the async
interface for your fennel app (see fennel.settings.Settings.interface),
which uses aioredis under the hood to enqueue items, retrieve results, etc, so
you will need to await those coroutines:

>>> app = App(name='foo', interface='async')
>>>
>>> @app.task
>>> async def bar(x)
... await asyncio.sleep(x)
>>>
>>> x = await bar.delay(1)
>>> await x.status()
SUCCESS

fennel.settings

	
class fennel.settings.Settings

	Settings can be configured via environment variables or keyword arguments for the
fennel.App instance (which take priority).

Examples

For environment variables, the prefix is FENNEL_, for instance:

FENNEL_REDIS_URL=redis://127.0.0.1:6379

FENNEL_DEFAULT_RETRIES=3

FENNEL_RESULTS_ENABLED=true

Or via App kwargs:

>>> from fennel import App
...
>>> app = App(
... name='myapp',
... redis_url='redis://127.0.0.1',
... default_retries=3,
... results_enabled=True,
... log_level='info',
... log_format='json',
... autodiscover='**/tasks.py',
... interface='sync',
...)

	Parameters

	
	redis_url (str) – Redis URL. Default 'redis://127.0.0.1:6369'

	interface (str) – Which client interface should we use – sync or async? Default 'sync'

	processes (int) – How many executor processes to run in each worker. Default
multiprocessing.cpu_count()

	concurrency (int) – How many concurrent consumers to run (we make at least this many Redis
connections) in each executor process. The default, 8, can handle 160 req/s in
a single executor process if each task is IO-bound and lasts on average 50ms. If
you have long running CPU-bound tasks, you will want to run multiple executor
processes (and set heartbeat_timeout to greater than your maximum expected task
duration). Default 8

	default_retries (int) – How many times to retry a task in case it raises an exception during execution.
With 10 retries and the default fennel.utils.backoff() function, this will
be approximately 30 days of retries. Default 10

	retry_backoff (Callable) – Which algorithm to use to determine the retry schedule. The default is
exponential backoff via fennel.utils.backoff().

	read_timeout (int) – How many milliseconds to wait for messages in the main task queue. Default
4000

	prefetch_count (int) – How many messages to read in a single call to XREADGROUP. Default 1

	heartbeat_timeout (float) – How many seconds before an executor is considered dead if heartbeats are missed.
If you have long-running CPU-bound tasks, this value should be greater than your
maximum expected task duration. Default 60

	heartbeat_interval (float) – How many seconds to sleep between heartbeats are stored for each executor process.
Default 6

	schedule_interval (float) – How many seconds to sleep between polling for scheduled tasks. Default 4

	maintenance_interval (float) – How many seconds to sleep between running the maintenance script. Default 8

	task_timeout (int) – How long to wait for results to be computed when calling .get(), seconds.
Default 10

	grace_period (int) – How many seconds to wait for in-flight tasks to complete before forcefully
exiting. Default: 30

	restults_enabled (bool) – Whether to store results. Can be disabled if your only use-case is
‘fire-and-forget’. Default True

	results_ttl (int) – How long before expiring results in seconds. Default 3600 (one hour).

	log_format (str) – Whether to pretty print a human-readable log (“console”) or JSON (“json”).
Default 'console'

	log_level (str) – The minimum log level to emit. Default 'debug'

	autodiscover (str) – The pattern for pathlib.Path.glob() to find modules containing
task-decorated functions, which the worker must import on startup. Will be
called relative to current working directory. Can be set to the empty string to
disable. Default '**/tasks.py'

fennel.worker

	
fennel.worker.worker.start(app, exit='signal')

	The main entrypoint for the worker.

The worker will create and monitor N fennel.worker.Executor processes. Each
Executor will spawn M coroutines via an asyncio event loop. N and M are
controlled by fennel.settings.Settings.processes and
fennel.settings.Settings.concurrency respectively.

CPU-bound tasks benefit from multiple processes. IO-bound tasks will benefit from
high executor concurrency.

	Parameters

	
	app (fennel.App) – The application instance for which to start a background worker.

	exit (str) – The exit strategy. EXIT_SIGNAL is used when the worker should only stop on
receipt of a interrupt or termination signal. EXIT_COMPLETE is used in tests
to exit when all tasks from the queue have completed.

Notes

signal.SIGINT and signal.SIGTERM are handled by gracefully shutting down, which
means giving the executor processes a chance to finish their current tasks.

	
class fennel.worker.executor.Executor(app)

	The Executor is responsible for reading jobs from the Redis queue and
executing them.

Heartbeats are sent from the executor periodically (controlled by
fennel.settings.Settings.heartbeat_interval). If they are missing for
more than fennel.settings.Settings.heartbeat_timeout seconds, the
executor will be assumed dead and all of its pending messages will be reinserted
to the stream by another worker’s maintenance function.

	Parameters

	app (fennel.App) – The application instance for which to start an Executor.

	
start(exit: str = 'signal', queue: multiprocessing.context.BaseContext.Queue = None) → None

	Begin the main executor loop.

	Parameters

	
	exit (str) – The exit strategy. EXIT_SIGNAL is used when the worker should only stop on
receipt of a interrupt or termination signal. EXIT_COMPLETE is used in tests
to exit when all tasks from the queue have completed.

	queue (multiprocessing.Queue) – A QueueHandler will be used to send logs to this queue to avoid
interleaving from multiple processes.

Notes

Intended to run via fennel.worker.worker.start() which will supervise
multiple Executor processes.

signal.SIGINT and signal.SIGTERM are handled by gracefully shutting down,
which means giving the executor processes a chance to finish their current
tasks.

	
is_running()

	

fennel.client

A collection of synchronous classes and functions to interact with the Fennel system.

	
fennel.client.purge_dead(app, filter=<function <lambda>>, batchsize=100)

	Iterate over the dead-letter queue and delete any jobs for which filter(job)
evaluates to True. The default is to delete all jobs.

	
fennel.client.read_dead(app, batchsize=100)

	Iterate over the dead-letter queue and return all job data.

	
fennel.client.replay_dead(app, filter=<function <lambda>>, batchsize=100)

	Iterate over the dead-letter queue and replay any jobs for which filter(job)
evaluates to True. The default is to replay all jobs.

	
class fennel.client.AsyncResult(job: fennel.job.Job, app)

	A handle for a task that is being processed by workers via the task queue.

Conceptually similar to the AsyncResult from the mutliprocessing library.

	
status()

	Return the status of the task execution.

Examples

>>> @app.task
>>> def bar(x)
... time.sleep(x)
... return x
...
>>> x = bar.delay(5)
>>> x.status()
SENT
>>> x.status() # After roughly 5 seconds...
SUCCESS

	
get(timeout: int = <object object>) → Any

	Wait for the result to become available and return it.

	Raises

	
	fennel.exceptions.TaskFailed – If the original function raised an exception.

	fennel.exceptions.Timeout – If > timeout seconds elapse before a result is available.

Examples

>>> @app.task(retries=0)
>>> def foo(x):
... return x
...
>>> x = foo.delay(7)
>>> x.get() # Wait for the result.
7

Warning

You must have results storage enabled
(fennel.settings.Settings.results_enabled)

If you have retries enabled, they may be rescheduled many times, so you may
prefer to use retries=0 for tasks whose result you intend to wait for.

	
class fennel.client.Task(name: str, func: Callable, retries: int, app)

	
	
delay(*args: Any, **kwargs: Any) → fennel.client.results.AsyncResult

	Traditional Celery-like interface to enqueue a task for execution by the
workers.

The args and kwargs will be passed through to the task when executed.

Examples

>>> @app.task
>>> def foo(x, bar=None):
... time.sleep(x)
... if bar == "mystr":
... return False
... return True
...
>>> foo.delay(1)
>>> foo.delay(2, bar="mystr")

	
__call__(*args: Any, **kwargs: Any) → Any

	Call the task-decorated function as a normal Python function. The fennel system
will be completed bypassed.

Examples

>>> @app.task
>>> def foo(x):
... return x
...
>>> foo(7)
7

	
fennel.client.gather(results: Iterable[fennel.client.results.AsyncResult], task_timeout=10, return_exceptions=True)

	Multi-result version of .get() – wait for all tasks to complete and return all of
their results in order.

Has the same semantics as asyncio.gather.

	
fennel.client.wait(results: Iterable[fennel.client.results.AsyncResult], timeout: int, return_when='ALL_COMPLETED')

	Wait for all tasks to complete and return two sets of Futures (done, pending).

Has the same semantics as asyncio.wait.

fennel.aio.client

A collection of asynchronous classes and functions, expected to be run in an
asyncio-compatible event loop, to interact with the Fennel system.

	
async fennel.client.aio.purge_dead(app, filter=<function <lambda>>, batchsize=100)

	Iterate over the dead-letter queue and delete any jobs for which filter(job)
evaluates to True. The default is to delete all jobs.

	
async fennel.client.aio.read_dead(app, batchsize=100)

	Iterate over the dead-letter queue and return all job data.

	
async fennel.client.aio.replay_dead(app, filter=<function <lambda>>, batchsize=100)

	Iterate over the dead-letter queue and replay any jobs for which filter(job)
evaluates to True. The default is to replay all jobs.

	
class fennel.client.aio.AsyncResult(job: fennel.job.Job, app)

	A handle for a task that is being processed by workers via the task queue.

Conceptually similar to the AsyncResult from the mutliprocessing library.

	
async status()

	Return the status of the task execution.

Examples

>>> @app.task
>>> async def bar(x)
... await asyncio.sleep(x)
... return x
...
>>> x = await bar.delay(5)
>>> await x.status()
SENT
>>> await x.status() # After roughly 5 seconds...
SUCCESS

	
async get(timeout: int = <object object>) → Any

	Wait for the result to become available and return it.

	Raises

	
	fennel.exceptions.TaskFailed – If the original function raised an exception.

	fennel.exceptions.Timeout – If > timeout seconds elapse before a result is available.

Examples

>>> @app.task(retries=0)
>>> def foo(x):
... return x
...
>>> x = await foo.delay(7)
>>> await x.get() # Wait for the result.
7

Warning

You must have results storage enabled
(fennel.settings.Settings.results_enabled)

If you have retries enabled, they may be rescheduled many times, so you may
prefer to use retries=0 for tasks whose result you intend to wait for.

	
class fennel.client.aio.Task(name: str, func: Callable, retries: int, app)

	
	
async delay(*args: Any, **kwargs: Any) → fennel.client.aio.results.AsyncResult

	Enqueue a task for execution by the workers.

Similar to asyncio.create_task (but also works with non-async functions and runs
on our Redis-backed task queue with distributed workers, automatic retry, and
result storage with configurable TTL).

The args and kwargs will be passed through to the task when executed.

Examples

>>> @app.task(retries=1)
>>> async def foo(x, bar=None):
... asyncio.sleep(x)
... if bar == "mystr":
... return False
... return True
...
>>> await foo.delay(1)
>>> await foo.delay(2, bar="mystr")

	
__call__(*args: Any, **kwargs: Any) → Any

	Call the task-decorated function as a normal Python function. The fennel system
will be completed bypassed.

Examples

>>> @app.task
>>> def foo(x):
... return x
...
>>> foo(7)
7

	
async fennel.client.aio.gather(results: Iterable[fennel.client.aio.results.AsyncResult], task_timeout=10, return_exceptions=True)

	Multi-result version of .get() – wait for all tasks to complete and return all of
their results in order.

Has the same semantics as asyncio.gather.

	
async fennel.client.aio.wait(results: Iterable[fennel.client.aio.results.AsyncResult], timeout: int, return_when='ALL_COMPLETED')

	Wait for all tasks to complete and return two sets of Futures (done, pending).

Has the same semantics as asyncio.wait.

fennel.status

Jobs have a number of statuses through their lifecycle. This module contains the
constants. If you have enqueued a task for execution, then you can obtain its status
as follows:

>>> x = mytask.delay()
>>> x.status()
EXECUTING

	
fennel.status.UNKNOWN = 'UNKNOWN'

	The job’s status is not stored in Redis. Presumably no action has been taken on the
job.

	
fennel.status.SENT = 'SENT'

	The job has been sent to Redis, but execution has not yet started.

	
fennel.status.EXECUTING = 'EXECUTING'

	A worker has received the job from the queue and has begun executing it.

	
fennel.status.SUCCESS = 'SUCCESS'

	Execution was successful and the job’s result is ready (if results storage is
enabled).

	
fennel.status.RETRY = 'RETRY'

	Execution was not successful (an exception was raised) and a retry is scheduled
to occur in the future.

	
fennel.status.DEAD = 'DEAD'

	Execution was not successful (an exception was raised) and retries have been
exhausted, so the job is now in the dead-letter queue where it will remain
until manual intervention (via the CLI or client code).

fennel.exceptions

	
exception fennel.exceptions.FennelException

	

	
exception fennel.exceptions.TaskFailed(original_type: str, original_args: List)

	This exception is returned by worker processes which experienced an exception
when executing a task.

	Parameters

	
	original_type (str) – The name of the original exception, e.g. 'ValueError'.

	original_args (List) – The arguments given to the original exception, e.g. ['Not found']

Examples

>>> @app.task(retries=0)
>>> async def foo(n):
... raise Exception("baz")
...
>>> x = await foo.delay(3)
>>> try:
... result = await x.get()
>>> except TaskFailed as e:
... assert e.original_type == "Exception"
... assert e.original_args == ["baz"]

	
exception fennel.exceptions.ResultsDisabled

	Raised when results_enabled=False and code attempts to access a tasks result via
.get().

	
exception fennel.exceptions.UnknownTask

	Raised by a worker process if it is unable to find a Python function corresponding
to the task it has read from the queue.

	
exception fennel.exceptions.Timeout

	Raised by client code when a given timeout is exceeded when waiting for results to arrive.

	
exception fennel.exceptions.JobNotFound

	Raised by client code when attempting to retrieve job information that cannot be
found in Redis.

	
exception fennel.exceptions.Chaos

	Used in tests to ensure failures are handled properly.

	
exception fennel.exceptions.Completed

	Used internally to shutdown an Executor if the exit condition is completing all
tasks.

fennel.utils

	
fennel.utils.backoff(retries: int, jitter: bool = True) → int

	Compute duration (seconds) to wait before retrying using exponential backoff with
jitter based on the number of retries a message has already experienced.

The minimum returned value is 1s
The maximum returned value is 604800s (7 days)

With max_retries=9, you will have roughly 30 days to fix and redeploy the the task
code.

	Parameters

	
	retries (int) – How many retries have already been attemped.

	jitter (bool) – Whether to add random noise to the return value (recommended).

Notes

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

fennel.job

	
class fennel.job.Job(task: str, args: List, kwargs: Dict, tries: int = 0, max_retries: int = 9, exception: Dict = <factory>, return_value: Any = None, status: str = 'UNKNOWN', uuid: str = <factory>)

	The internal representation of a job.

	Parameters

	
	task (str) – The name of the task. By default will use
f"{func.__module__}.{func.__qualname__}", where func is the Python
callable.

	args (List) – The job’s args.

	kwargs (Dict) – The job’s kwargs.

	tries (int) – The number of attempted executions.

	max_retries (int) – The maximum number of retries to attempt after failure.

	exception (Dict) – Exception information for the latest failure, contains
‘original_type’ (str, e.g. ‘ValueError’) and
‘original_args’ (List, e.g. [‘Not found’]).

	return_value (Any) – The return value of the Python callable when execution succeeds.

	status (str) – One of fennel.status, the current lifecycle stage.

	uuid (str) – Base64-encoded unique identifier.

Changelog

v0.3.0 (2020-08-20)

	Added configurable grace period before shutting down

	Exceptions now have a common superclass

	Switched async Redis driver from aioredis to aredis

	Adopted AnyIO for better async primitives

v0.2.4 (2020-07-03)

	Fixed multiprocessing bug for thread listener

v0.2.3 (2020-07-02)

	Bump pydantic major version

v0.2.2 (2020-07-02)

	Bump structlog major version

v0.2.1 (2020-07-02)

	Improved testing for CPU-bound tasks

v0.2.0 (2020-06-14)

	Added Python 3.8 support

v0.1.2 (2019-10-06)

	Fixed typo maintenence -> maintenance

v0.1.1 (2019-10-03)

	Fixed CLI and autodiscovery bugs

v0.1.0 (2019-10-03)

	Initial release

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fennel	

 	
 	
 fennel.client	

 	
 	
 fennel.client.aio	

 	
 	
 fennel.exceptions	

 	
 	
 fennel.job	

 	
 	
 fennel.settings	

 	
 	
 fennel.status	

 	
 	
 fennel.utils	

 	
 	
 fennel.worker.executor	

 	
 	
 fennel.worker.worker	

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | P
 | R
 | S
 | T
 | U
 | W

Symbols

 	
 	
 --app <application>

 	fennel-dlq command line option

 	fennel-info command line option

 	fennel-task command line option

 	fennel-worker command line option

 	
 --concurrency <concurrency>

 	fennel-worker command line option

 	
 --processes <processes>

 	fennel-worker command line option

 	
 --uuid <uuid>

 	fennel-task command line option

 	
 	
 -a

 	fennel-dlq command line option

 	fennel-info command line option

 	fennel-task command line option

 	fennel-worker command line option

 	
 -c

 	fennel-worker command line option

 	
 -p

 	fennel-worker command line option

 	
 -u

 	fennel-task command line option

_

 	
 	__call__() (fennel.client.aio.Task method)

 	(fennel.client.Task method)

A

 	
 	
 ACTION

 	fennel-dlq command line option

 	
 	App (class in fennel)

 	AsyncResult (class in fennel.client)

 	(class in fennel.client.aio)

B

 	
 	backoff() (in module fennel.utils)

C

 	
 	Chaos

 	
 	Completed

D

 	
 	DEAD (in module fennel.status)

 	
 	delay() (fennel.client.aio.Task method)

 	(fennel.client.Task method)

E

 	
 	EXECUTING (in module fennel.status)

 	
 	Executor (class in fennel.worker.executor)

F

 	
 	fennel (module)

 	
 fennel-dlq command line option

 	--app <application>

 	-a

 	ACTION

 	
 fennel-info command line option

 	--app <application>

 	-a

 	
 fennel-task command line option

 	--app <application>

 	--uuid <uuid>

 	-a

 	-u

 	
 fennel-worker command line option

 	--app <application>

 	--concurrency <concurrency>

 	--processes <processes>

 	-a

 	-c

 	-p

 	
 	fennel.client (module)

 	fennel.client.aio (module)

 	fennel.exceptions (module)

 	fennel.job (module)

 	fennel.settings (module)

 	fennel.status (module)

 	fennel.utils (module)

 	fennel.worker.executor (module)

 	fennel.worker.worker (module)

 	FennelException

G

 	
 	gather() (in module fennel.client)

 	(in module fennel.client.aio)

 	
 	get() (fennel.client.aio.AsyncResult method)

 	(fennel.client.AsyncResult method)

I

 	
 	is_running() (fennel.worker.executor.Executor method)

J

 	
 	Job (class in fennel.job)

 	
 	JobNotFound

P

 	
 	purge_dead() (in module fennel.client)

 	(in module fennel.client.aio)

R

 	
 	read_dead() (in module fennel.client)

 	(in module fennel.client.aio)

 	replay_dead() (in module fennel.client)

 	(in module fennel.client.aio)

 	
 	ResultsDisabled

 	RETRY (in module fennel.status)

S

 	
 	SENT (in module fennel.status)

 	Settings (class in fennel.settings)

 	start() (fennel.worker.executor.Executor method)

 	(in module fennel.worker.worker)

 	
 	status() (fennel.client.aio.AsyncResult method)

 	(fennel.client.AsyncResult method)

 	SUCCESS (in module fennel.status)

T

 	
 	Task (class in fennel.client)

 	(class in fennel.client.aio)

 	
 	task() (fennel.App method)

 	TaskFailed

 	Timeout

U

 	
 	UNKNOWN (in module fennel.status)

 	
 	UnknownTask

W

 	
 	wait() (in module fennel.client)

 	(in module fennel.client.aio)

 nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Guide

 		
 Interfaces

 		
 Sync

 		
 Async

 		
 Two use-cases

 		
 1. Fire-and-forget

 		
 2. Compose parallel pipelines

 		
 Error handling

 		
 The dead-letter queue

 		
 Workers

 		
 Logging

 		
 Limitations

 		
 Installation

 		
 Motivation

 		
 Architecture

 		
 Fundamentals

 		
 Redis Streams

 		
 The Worker

 		
 Job Lifecycle

 		
 CLI

 		
 fennel

 		
 dlq

 		
 info

 		
 task

 		
 worker

 		
 API Reference

 		
 fennel

 		
 fennel.settings

 		
 fennel.worker

 		
 fennel.client

 		
 fennel.aio.client

 		
 fennel.status

 		
 fennel.exceptions

 		
 fennel.utils

 		
 fennel.job

 		
 Changelog

 		
 v0.3.0 (2020-08-20)

 		
 v0.2.4 (2020-07-03)

 		
 v0.2.3 (2020-07-02)

 		
 v0.2.2 (2020-07-02)

 		
 v0.2.1 (2020-07-02)

 		
 v0.2.0 (2020-06-14)

 		
 v0.1.2 (2019-10-06)

 		
 v0.1.1 (2019-10-03)

 		
 v0.1.0 (2019-10-03)

_static/file.png

_static/minus.png

_static/plus.png

